
 1

mComm™ Programmer’s Guide

 2

Table of Contents

a) INTRODUCTION TO mComm: ... 3

b) mTouch GUI PACKET STRUCTURE:.. 4

1.1 THE BREAK CHARACTER: .. 5

1.2 THE BYTE COUNT: .. 5

1.3 THE OPERATION CODE (OPCODE): .. 5

1.4 THE ADDRESS FIELDS (ADDR:L AND ADDR:H) .. 5

1.5 THE LENGTH: ... 6

1.6 THE PACKET PAYLOAD: .. 6

1.6 THE CHECKSUM: ... 6

c) COMMUNICATION SPEED: ... 6

d) COMMAND/RESPONSE DESCRIPTION .. 7

e) mComm OPERATIONS FOR mTouch FRAMEWORK ... 7

5.1 INITIAL SESSION SETUP ... 8

Example: read Literal block .. 9

5.2 ACCESSING THE PARAMETERS .. 10

5.2.1 Reading raw data for sensor2 ... 10

5.2.2 Reading the press threshold for sensor 1 ... 11

5.2.3 Writing the mTouch Button Timeout parameter .. 12

5.3 STREAM OPERATIONS .. 13

5.3.1 Configuring the State Mask and raw data for sensor1 as stream output 14

5.3.2 Enabling the Stream output .. 16

3.2 APPENDIX: .. 17

 3

a) INTRODUCTION TO mComm:

Because of their highly-configurable property, mTouch applications rely on two-way communication

to fine-tune their acquisition and filtering functions, for optimal operation. Microchip has designed

the mComm communication protocol, to address mTouch debug and optimization growing needs.

The primary purpose of the mComm protocol is to provide a Master application with the capability

to directly access all types of memory in the mTouch device. Therefore, by just specifying a memory

type, and the access type (read or write), the user can theoretically get or set any data in the

mTouch Slave device. In reality, and for security reasons, it is up to the slave (the PIC

microcontroller) to decide what can be accessed. Anything else will remain sealed inside the MCU.

This protocol is designed to support 3 types of memory access: RAM, EEPROM and FLASH.

The mComm protocol can use several hardware communication layers. It uses UART (Hardware and

software), SPI and I2C peripherals to carry the data between the Master and the mTouch device.

Finally, the mComm protocol provide the application designer with great flexibility to design their

own custom commands to address any mTouch need, by providing services to transport any set of

data. The PIC designer specifies a buffer with the data to transmit, and the mTouch service code

handles all the formatting and the transmission to the Master. It also collects any response and

makes it available in a receive buffer to the user’s application.

The following figure shows how a mTouch system with the 2-way communication should be

assembled:

 4

Figure 1: System Block Diagram

b) mTouch GUI PACKET STRUCTURE:

Two-way UART communications start with a BREAK character and a Byte Count. The frames or packets

have the following structure, depending on who is sending and who is receiving:

Master � PIC:

BREAK byteCount opCode addr:l addr:h length optional, variable payload checksum

 Where:

- byteCount : Total length of the packet in bytes, including the checksum

- length

o If ‘read’ : Number of requested bytes to read

o If ‘write’ : Number of bytes in the payload, excluding the checksum

- checksum : XOR of all bytes in packet, starting from the opCode

PIC � Master:

BREAK byteCount opCode optional, variable payload checksum

 5

 Where:

- byteCount : Total length of the packet in bytes, including the checksum

- opCode : Either:

o Repeat of opCode used for master’s request

o 0xAA for ‘ACK’

o 0xA5 for ‘NACK’

- checksum : XOR of all bytes, starting from the opCode

1.1 THE BREAK CHARACTER:

Because of its streaming capability, the mTouch GUI uses binary data transmission (unlike any form for

character coding). In order to synchronize the receiver to the beginning of a packet, the system uses a

“Break” mechanism, which consists of sending 13 bits with 0 value, then a stop bit. On the receiver side,

the UART samples a normal character (8 bits), then expects a stop condition which doesn’t occur at that

time, consequently generating a “Framing” error. When both conditions exist (binary 0 value and a

Framing error), the receiver assumes a Break character was received and will expect a new data packet.

1.2 THE BYTE COUNT:

Immediately following the Break character, the receiver will expect a byte count for the remainder of

the packet (not including the byte count itself, but including the checksum character).

1.3 THE OPERATION CODE (OPCODE):

Next, the receiver will expect a code for the operation to be performed or any data response it might be

expecting.

1.4 THE ADDRESS FIELDS (ADDR:L AND ADDR:H)

The addr:L character holds the low byte of an address and the addr:H holds the high byte. This address

points to the location that PC/Master want to access in the PIC. This field applies to UART-based

communication.

 6

1.5 THE LENGTH:

This field contains the size of the payload, not including the checksum. Used in UART-Based

communication

1.6 THE PACKET PAYLOAD:

This entire area of the mComm packet contains any data relevant to a given OpCode and length. It could

contain user’s custom data as well. Depending on the command, a related number of bytes will be

expected for decoding purposes.

In some cases there could even be no data in the payload field.

1.6 THE CHECKSUM:

Because of the binary data format used for the exchange, a form of packet-integrity check needs to be

implemented. The mComm protocol uses a bitwise XOR on each single byte of the data packet, starting

from the OpCode. The byte count is intentionally ignored in this process

c) COMMUNICATION SPEED:

The mTouch communication protocol performs all data exchange at 38400 baud.

 7

d) COMMAND/RESPONSE DESCRIPTION

The two-way communication for mTouch devices is highly flexible. It provides the ability to

read/write data from/to RAM or Non-Volatile Memory, and continuously stream out any data from

RAM or NVM. Each kind of operation is assigned a unique opCode.

The master uses these basic read and write commands to access mTouch configuration data, sensor

information, and configure the stream output. The details of the mComm protocol can be found in

mComm Users Guide in Framework documentation.

e) mComm OPERATIONS FOR mTouch FRAMEWORK

In order to have a good understanding of what mComm has to offer, a good approach would be to go

through the mandatory steps of a communication session between the mTouch device (Slave of the

communication), and a Master Device (as a PC-GUI for example).

A critical and mandatory step, prior to any data exchange between the Master and mTouch Slave device,

is to get the system information which includes critical parameters like the number of sensors of the

application, the Data Block location in the EEPROM, various pointers to some critical variables, etc.

This Phase is called: INITIAL SESSION SETUP

Then we will look into how we can retrieve and update parameters in the mTouch Device: This section

will be called: ACCESSING THE PARAMETERS

Finally we will explore another important feature of the mComm protocol, that allows to configure,

enable and disable data streaming, in the STREAM OPERATIONS section.

 8

5.1 INITIAL SESSION SETUP

The Master device must retrieve critical information, without which the communication session would

simply be impossible. The variables needed for the mComm session are:

- The number of sensors: Needed to just build threshold tables, calculate offsets, …

- Start of EEPROM data: Because the mTouch application can have its data block

located anywhere in the EEPROM area, the Master has to retrieve this information,

prior to any parameter access.

- The mComm configuration Byte will let the Master know if the mTouch device has

any EEPROM or not and whether the application permits the access to it or not.

- Input buffer length: Depending on the RAM size on the mTouch device, the Slave

limits the size of its mComm receive buffer. Any attempt to send too long packets

will result in a communication error.

So the first step is to get the system configuration which contains the locations of mTouch configuration

data and variables. The system configuration data is organized in two blocks in RAM memory. One block

holds direct information for certain mTouch variables (like the actual number of sensors, EEPROM size,

etc.). This block is referred to as “Literal”. The second block is meant to hold pointers to variables, whose

location can only be known when the PIC application is generated (compile time). This area is referred to

as “Addresses” or “Pointers”. The two tables below contain the mappings and description for these two

blocks:

RAM Configuration Block Mapping : Literals

0x00 mComm Configuration Byte See mComm Configuration Byte details

0x01 mComm Input Buffer Length Length of the input buffer in bytes

0x02 mComm Stream Vector Length Number of vectors in the stream array

0x03 mTouch Number of Sensors Number of sensors

0x04 mTouch Configuration Byte See mTouch Configuration Byte details

0x05 Microcontroller's EEPROM Size Stored as a power of 2, the size of the EEPROM space. Ex: 256 bytes = 8

0x06 mTouch Framework Version Stores the framework version number

0x07 Application Software Version Stores the application's software version number - customer use only

0x08 Application Hardware Version Stores the application's hardware version number - customer use only

0x09 Board ID Stores the board ID for this application

 9

RAM Configuration Block Mapping : Addresses

0x00 Addr:L
mComm_streamConfig (RAM)

Address of the configuration byte for the stream in RAM. See

mComm Stream Configuration byte details 0x01 Addr:H

0x02 Addr:L
mComm_stream Address of the stream array in RAM. Useful if trying to read

the address and length values of the vectors 0x03 Addr:H

0x04 Addr:L
mTouch EEPROM Start Address

The starting address of the mTouch storage block will be

located. 0x05 Addr:H

0x06 Addr:L
mTouch State Mask Variable

The latest sensor state, one bit per enabled sensor. Variable

length is the smallest number of bytes to hold all sensors' bits. 0x07 Addr:H

0x08 Addr:L
mTouch Raw Data Array

Address of the sensor raw data array in RAM.

0x09 Addr:H

0x0A Addr:L
mTouch Baseline Array

Address of the sensor baseline data array in RAM.

0x0B Addr:H

0x0C Addr:L
mTouch Slider Array Address of the slider output array, if enabled. 0 if not.

0x0D Addr:H

0x0E Addr:L
mTouch Toggle Variable

Structured in the same way as the state mask, but only

toggles the state of a sensor onPress, not onRelease. 0x0F Addr:H

0x10 Addr:L
mComm GUI Custom Variable

Used in mComm_custom.c to show how a custom variable

can be accessed by the mComm module 0x11 Addr:H

The way to read these two blocks is using the “Read From RAM” command. Reading from RAM address

0x0000 will result in the output of the “literals” block, which has 10 bytes of data, and reading from

RAM address 0x0001 will result in the output of the “Pointer” block, which has 18 bytes of data.

In both cases, even though the length information has to be provided, it is in reality ignored by the

mTouch Slave device, as the full arrays are always sent to the Master device.

Example: read Literal block

Type of command: Reading from RAM

Request from Master:

BREAK byteCount opCode addr:l addr:h length checksum

BREAK 0x05 0x00 0x00 0x00 0x0a 0x04

mComm response:

BREAK byteCount opCode variable payload checksum

BREAK 0x0c 0x00 10 bytes data in Literal block checksum

 10

5.2 ACCESSING THE PARAMETERS

Once the Master has setup the communication session by retrieving the Configuration Blocks in RAM

described in the previous section, it is able to establish a valid communication session, and can start

reading and updating the parameters.

Because the mComm protocol is all based on memory access, we will take just a few examples to

illustrate how parameters can be accessed, depending on the type of memory they are stored in.

5.2.1 Reading raw data for sensor2

Assuming the master has already acquired the address of “mTouch Raw Data Array”, and it located at

0x0100. Since we are reading the data for sensor 2, we need to offset to location 0x100+2*2 (The raw

data is stored as an unsigned integer with a length of 2 bytes).

 The exchange allowing to read this data, will look like:

Add 0x04 offset

 11

Type of command: Read from RAM

Request from Master:

BREAK byteCount opCode addr:l addr:h length checksum

BREAK 0x05 0x01 0x04 0x01 0x02 0x0d

mComm response:

BREAK byteCount opCode variable payload checksum

BREAK 0x04 0x01 Raw:l Raw:h checksum

5.2.2 Reading the press threshold for sensor 1

Assuming the master has already retrieved the “mTouch EEPROM Start Address” in the “Pointers” block,

and the start address is 0x02, then the press threshold for sensor 1 is located at 0x13, length is 2.

Add offset

0x13

 12

Here again the corresponding exchange will look like the following:

Reading from NVM

Request from Master:

BREAK byteCount opCode addr:l addr:h length checksum

BREAK 0x05 0x03 0x11 0x00 0x02 0x15

mComm response:

BREAK byteCount opCode variable payload checksum

BREAK 0x04 0x01

Press Threshold -

Sensor 0:L

Press Threshold -

Sensor 0:H checksum

5.2.3 Writing the mTouch Button Timeout parameter

We assume here that the master has already retrieved the “mTouch EEPROM Start Address” in the

“Pointers” block, and the start address is 0x02, then the mTouch Button Timeout variable’s address will

be 0x0A with a length of 2.

Add offset

0x08

 13

The corresponding write command structure is as follows:

Writing to NVM

Request from Master:

BREAK byteCount opCode addr:l addr:h length variable payload checksum

BREAK 0x08 0x02 0x0a 0x00 2 Timeout: L Timeout: H checksum

mTouch device response:

If the write is successful, the PIC will respond with an ACK packet, otherwise it is either a NACK or no

response.

ACK packet:

BREAK byteCount opCode variable payload checksum

BREAK 0x03 0x02 0xAA checksum

NACK packet:

BREAK byteCount opCode variable payload checksum

BREAK 0x03 0x02 0xA5 checksum

5.3 STREAM OPERATIONS

mTouch devices, have the great capability of automatically streaming any data out to a Master Device,

on a periodical basis. The mTouch programmer can decide what data is to be output and what structure

will the stream have. This is extremely helpful for debugging purposes. There are two ways to configure

the stream output list. One way is to configure it in the framework and save the configuration in the

Flash memory space. With this approach, the master cannot modify the stream descriptor. The other

approach is to store the stream descriptor in RAM, allowing the Master Device to alter the default

descriptor of the stream based on the user’s custom needs, using the write to RAM command to

configure the list. The stream output list contains 3-byte Vectors, where the 2 first bytes would contain a

pointer to any variable in the mTouch Device, while the 3
rd

 byte holds the length of the data to be

output.

Stream operation involves 3 distinct types of action:

 14

a) Configuration: where the descriptor is set and written to the mTouch device (for example the

user selects the number of sensors the Slave needs to stream for)

b) Enable: Switching the stream on

c) Disable: Switching the stream Off

5.3.1 Cconfiguring the State Mask and raw data for sensor1 as stream output

We assume the master has already retrieved the “mComm_stream”, “mTouch State Mask Variable” and

“mTouch Raw Data Array” in the “Addresses” block, and the “mTouch Number of Sensors” in the

“Literals” block. So the RAM address that should write into is “mComm_stream”, which is the address of

the stream list, then the length is 6, because 2 variables need to be output. And the payload are the

“mTouch State Mask Variable” followed by its data length, and the address of raw data of sensor 1,

which equals to “mTouch Raw Data Array + 4”, and its length. The length for mTouch State Mask

Variable is determined by how many sensor it has, every 8 sensor uses one byte, and the length for raw

data is two bytes.

Write to RAM

 15

Request from Master:

BREAK byteCount opCode addr:l addr:h length

BREAK 0x09 0x00 mComm_stream:L mComm_stream:H 6

variable payload checksum

mTouch

State Mask

Variable : L

mTouch

State Mask

Variable :H

Length(Determin

ed by number of

sensor)

address of

sensor 1 raw

date : L

address of

sensor 1 raw

date : H 0x02 checksum

Note: The whole length of this packet is still constrained by the input buffer of the framework.

mComm response:

If write successfully, the PIC will respond with an ACK packet, otherwise it is either a NACK or no

response.

ACK packet:

BREAK byteCount opCode variable payload checksum

BREAK 0x03 0x02 0xAA checksum

NACK packet:

BREAK byteCount opCode variable payload checksum

BREAK 0x03 0x02 0xA5 checksum

After configuring the stream list either in the code or using the write to RAM packet, the master needs

to turn on the stream. The output enable bit is stored in the RAM, so the master will use the write to

RAM packet.

 16

5.3.2 Enabling the Stream output

Assume the master already read the “mComm_streamConfig” in the “Addresses” block, since the enable

switch is in bit 0 of a mComm_streamConfig byte, the master only needs to pay attention to that one bit.

Write to RAM

Request from Master:

BREAK byteCount opCode addr:l addr:h length

variable

payload checksum

BREAK 0x06 0x00 mComm_streamConfig:L mComm_streamConfig:H 1 0x01 checksum

mComm response:

If write successfully, the PIC will respond with an ACK packet, otherwise it is either a NACK or no

response.

ACK packet:

BREAK byteCount opCode variable payload checksum

BREAK 0x03 0x02 0xAA checksum

NACK packet:

BREAK byteCount opCode variable payload checksum

BREAK 0x03 0x02 0xA5 checksum

 17

3.2 APPENDIX:

Communication response time:

T��������: The time to transmit a full packet is defined as the transmit time, it is related to the length of

the packet and the baud rate of the UART. If using baud rate 38400 bps, then

T�������� 	
Bits�Break Ch� � Bits�ByteCount� � Bits�OpCode� � Bits�Payload� � Bits�CheckSum�

Baud rate

	
13 � 10 � 10 � 10 ' bytes�Payload� � 10

38400

	
43 � 10 ' bytes�Payload�

38400

T+�,-.�� 	 T/��� � T-,����0 +�,-.�� ��0 0.-,0. � T112345

T/��� : This is the time between PIC receives command in the UART hardware buffer and PIC starts to

decode the command. The CVD Framework scan is in the interrupt service routine, so if there is a

command received by PIC during the scan, the received data will be stored in the UART hardware and

won’t be process until the PIC finishes this scan. Therefore, the worst case is that PIC receives a

command when it just starts a scan routine, then the worst case T/��� equals to the time to finish one

sample CVD scan.

 T112345: This is the time for EEPROM read or write operation. If there is no need to access EEPROM

like ACK command, then T112345=0. If the command involves accessing the EEPROM, the T112345 =

Master TX / PIC RX

Master RX / PIC TX

 Command

Response

Tprocess Ttransmit

Tresponse

 18

No. of bytes * EEPROM cycle time. According to the datasheet for enhanced-mid range core, the typical

and maximum EEPROM cycle time is 4ms and 5ms, respectively.

T-,����0 +�,-.�� ��0 0.-,0. : This is the code execution time to process the packet and perform

framework decoding before sending out the response. This time depend on the system Fosc, how

many sensors is enabled, if matrix or proximity decoding is enable, and how many bytes in the

input buffer.

